Referensi


Baca juga: Pendahuluan | Pretreatment | Hidrolisis Asam |Hidrolisis Enzimatis| Fermentasi | Purifikasi | Literatur


1. Review: Trends in biotechnological production of fuel ethanol from different feedstocks. Sanchez, O.J. and Cardona, C.A. 2007, Bioresource Technology, p. .doi: 10.1016/jbiortech.2007.11.013 Article in Press.
2. Global potential bioethanol production from wasted crops and crop residues. Kim, S. and Dale, B.E. 2004, Biomass and Bioenergy, Vol. 26, pp. 361-375.
3. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Rahman, S.H.A., et al. 2007, Bioresource Technology, Vol. 98, pp. 554-559.
4. Pemanfaatan Tandan Kosong Kelapa Sawit sebagah Sumber Bahan Kimia. Nuryanto, Eko. 2000, Warta PPKS 8(3), p. 137.

5. Preparation of Cellulose from Oil Palm Empty Fruit Bunches Via Ethanol Digestion: Effect of Acid and Alkali Catalysts. Aziz, Astimar Abdul, Husin, Mohamad and Mokhtar, Anis. 2002, Journal of Oil Palm Research, Vol. 14 (1), pp. 9-14. joprv14n1-9.pdf.
6. Morpholigical and Chemical Nature of Fiber Strand of Oil Palm Empty-Fruit-Bunch (OPEFB). Law, Kwei-Nam, Daud, War Rosli Wan and Ghazali, Arniza. 2008, Bioresources 2(3), pp. 351-362.
7. Badger, P.C. Ethanol from cellulose: a general review. Trends in new crops and new uses. s.l. : ASHS Press, 2002, pp. 17-21.
8. Prihandana, R., et al. Bioetanol Ubi Kayu Bahan Bakar Masa Depan. Jakarta : AgroMedia Pustaka, 2007.
9. Biotechnology for Cellulosic Ethanol. Yang, Bin and Wayman, Charles E. 2007, APBN. (www.asianbiotech.com), pp. 555-563.
10. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Wyman, Charles E. 1994, Bioresource Technology, Vol. 50, pp. 3-15.
11. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Hamelinck, Carlo N, Hooijdonk, Geertje van and Faaij, Andre PC. 2005, Biomass and Bioenergy, Vol. 28, pp. 384-410.
12. Features of promising technologies for pretreatment of lignocellulosic biomass. Mosier, Nathan, et al. 2005, Bioresource Technology 96 , pp. 673–686.
13. Pretreatment of Lignocellulosic Waste to Improve Bioethanol and Biogas Production. Taherzadeh, Muhammad J. and Karimi, Keikhosro. 2008, Int. J. Mol. Sci 9, pp. 1621-1651.
14. Pretreatments to enhance the digestibility of lignocellulosic biomass. Hendriks, A.T.W.M. and Zeeman, G. 2009, Bioresource Technology, Vols. In Press, Corrected Proof, pp. –.
15. Feedstock Pretreatment Strategies for Producing Ethanol from Wood, Bark, and Forest Residues. Hu, Gang, Heitmann, John A. and Rojas, Orlando J. 2008, Bioresources 3(1), pp. 270-294.
16. Evaluation of Pretreatment with Pleurotus ostreatus for enzymatic hidrolysis of rice straw. Taniguchi, Masayuki, et al. 2005, Journal of Bioscience and Bioengineering, Vol. 100, pp. 637-643. 100_637.pdf.
17. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Shi, Jian, Chinn, Mari S. and Sharma-Shivappa, Ratna R. 2008, Bioresource Technology, Vol. 99, pp. 6556-6564.
18. Potential application of bio-ligninolytic System. Kirk, T. Kent and Chang, Hou-Min. 1981, Enzyme Microb. Technol., Vol. 3, pp. 189-196.
19. Microbial pretreatment of biomass. Keller, F.A., Hamilton, J.E. and Nguyen, Q.A. 2003, Applied Biochemistry and Biotechnology, Vol. 105, pp. 27-41.
20. Screening of white-rot fungi for biological pretreatment of wheat straw for biogass production. Muller, H.W. and Trosch, W. 1986, Applied Microbiology and Biotechnology 24, pp. 180-185.
21. Scott, G.M., et al. Recent Development in Bioplping Technology at Madison, WI. Biotechnology in Pulp and Paper Industry. 2002, pp. 61-62.
22. Isroi and Siswanto. Karakteristik Handsheet yang Dibuat dari Biochemical Pulping Jerami Padi dengan Fungi Pelapuk Putih Omphalina sp. Makalah Poster pada Acara Pertemuan Ilmiah Tahunan Perhimpunan Mikrobiologi Indonesia, Universitas Jenderal Soedirman, Agustus 2008. Purwokerto, Jawa Tengah : Balai Penelitian Bioteknologi Perkebunan Indonesia, 2008.
23. Effect of a Fungal Treatment of The Brightness and Strength Properties of A Mechanical Pulp from Douglas-Fir. Jong, Ed de, Chandra, Richard P. and Saddler, John N. 1997, Bioresource Technology, Vol. 61, pp. 61-68.
24. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Camassola, Marli and Dillon, Aldo J.P. 2008, Industrial Crops and Products, Vols. -, p. in press.
25. Production of Manganese Peroxidase and Organic Acid and Mineralization of 14C-Labelled Lignin (14C-DHP) during Solid-State Fermentation of Wheat Straw with the White Rot Fugus Nematoloma frowardii. Hofrichter, Martin, et al. 1999, Applied and Enviromental Microbioloby, Vol. 65, pp. 1864-1870.
26. Role of fungal peroxidases in biological ligninolysis. Hammel, Kenneth E and Cullen, Dan. 2008, Current Opinion in Plant Biology, Vol. 11, pp. 349-355.
27. Structural, mechanical and optical properties of recycled paper blended with oil palm emtpy fruit bunch pulp. Ibrahim, Rushdan. 2003, Journal of Oil Palm Research, Vol. 15, pp. 28-34.
28. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Pandey, Ashok, et al. 2000, Bioresource Technology, Vol. 74, pp. 69-80.
29. Purwadi, Ronny. Continuous Ethanol Production from Dilute-Acid Hydrolysate: Detoxification and Fermentation Strategy. Dissertation. s.l. : Department of Chemical and Biological Engineering,CHALMERS UNIVERSITY OF TECHNOLOGY, 2006.
30. Conversion of rice straw to sugars by dilute-acid hydrolysis. Karimi, K., Kheradmandinia, S. and Taherzadeh, M.J. 2006, Biomass and Bioenergy, Vol. 30, pp. 247-253.
31. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Chen, Ming, Zhao, Jing and Xia, Liming. 2008, Carbohydrate Polymers, Vol. 71, pp. 411–415.
32. Enzymatic hydrolysis of pretreated soybean straw. Xu, Z., et al. 2007, Biomass and Bioenergy 31, pp. 162-167.
33. Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, adn laccase. Higuchi, Takayoshi. 2004, Proc. Jpn. Acad., Vol. 80, pp. 204-211. 80_204.pdf.
34. Palonen, Hetti. Role of Lignin in the Enzymatic Hydrolysis of Lignocellulose. VTT Biotechnology. 2004.
35. Comparison of steam pretreatment of Eucalyptus. Aspen, and spruce wood chips and their enzymatic hydrolysis. Ramos, L. P., Breuil, C. and Saddler, J. N. 1992, Appl. Biochem. Biotechnol., Vol. 34/35, pp. 37-47.
36. Changes in Macromolecular Characteristics and biological activity of hydrolytic lignin in the course of composting. Novikora, L.N., et al. 2002, App. Biochem. Microbiol., Vol. 38, pp. 181-185.
37. Sjöström, E. Wood Chemistry, fundamentals and applications. s.l. : London: Academic Press, 1981. p. 223.
38. Characterization of explotion wood. 1. Structure and physical properties. Tanahashi, M., et al. 1983, Wood Research, Vol. 69, pp. 36-51.
39. Characterization of Aspen exploded wood lignin. Marchessault, R.H., et al. 1981, Can. J. Chem., Vol. 60, pp. 2372-3282.
40. Cellulose: the structure slowly unravels. O’Sullivan, A.C. 1997, Cellulose, Vol. 4, pp. 173-207.
41. Native Cellulose: A Composite of Two Distinct Crystalline Form. Attala, R.H. and Vanderhart, D.L. 1984, Science, Vol. 223, pp. 283-285.
42. Biodegradation and biolgical treatments of cellulose, hemicellulose, and lignin: an overview. Perez, J., et al. 2005, Int Microbiol, Vol. 5, pp. 53-63.
43. Moore, H.K. Process of Making Ethyl Alcohol from Wood. 1,323,540 United State of America, 1919.
44. United State Departemen of Energy. Breaking the Biological Barriers to Cellulosic Ethanol: A Join Research Agenda. s.l. : DOE/SC-0095. U.S. Departemen of Energy Office of Science and Office of Energy Efficiency and Renewable Energy, 2008.
45. Consolidated bioprocessing of cellulosic biomass: an update. Lynd, Lee R., et al. 2005, Current Opinion in Biotechnology, Vol. 16, pp. 577–583. CurrentOpinioninBiotechnology_2.pdf.
46. Coordinated development of leading biomass pretreatment technologies. Wyman, Charles E., et al. 2005, Bioresource Technology 96, pp. 1959–1966.
47. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Wyman, Charles E., et al. 2005, Bioresource Technology, Vol. 96, pp. 2026–2032.
48. Hydrolysis of lignocellulosic materials for ethanol production: a review. Sun, Y. and Cheng, J. 2002, Bioresource Technology, Vol. 83, pp. 1-11.
49. Sumultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Zhu, S., et al. 2005, Biosystems Engeneering 92(2), pp. 229-235.
50. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery,high cellulose digestibility and low lignin hydrolysis. Thomsen, Mette Hedegaard, Thygesen, Anders and Thomsen, Anne Belinda. 2008, Bioresource Technology 99, pp. 4221–4228.
51. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermofilic anaerobic bacteria. Ahring, B. K., et al. 1996, Bioresource Technology 58, pp. 107-113.
52. Process and economic analysis of pretreatment technologies. Eggeman, Tim and Elander, Richard T. 2005, Bioresource Technology, Vol. 96, pp. 2019-2025.
53. Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Ohgren, Karin, et al. 2006, Biomass and Bioenergy, Vol. 30, pp. 863-869.
54. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Kabel, Mirjam A., et al. 2007, Bioresource Technology 98, pp. 2034–2042.
55. The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment. Eklund, Robert, Galbe, Mats and Zacchi, Guido. 1995, Bioresource Technology, Vol. 52, pp. 225-229.
56. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Negro, M. J., et al. 2003, Biomass and Bioenergy, Vol. 25, pp. 301-308.
57. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bower, Shane, et al. 2008, Bioresource Technology, Vol. 99, pp. 7354-7362.
58. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Cara, Cristobal, et al. 2008, Fuel, Vol. 87, pp. 692-700.
59. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Kim, Kyoung Heon and Hong, Juan. 2001, Bioresource Technology 77, pp. 139-144.
60. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Saha, Badal C. and Cotta, Michael A. 2008, Biomass and Bioenergy , p. (In Press).
61. Integrated process for total utilization of wood components by steam-explosion pretreatment. Shimizu, K., et al. 1998, Biomass and Bioenergy, Vol. 14, pp. 195-203.
62. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Sun, Fubao and Chen, Hongzhang. 2008, Bioresource Technology, Vol. 99, pp. 5474-5479.
63. Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Sun, Fubao and Chen, Hongzhang. 2008, Bioresource Technology 99, pp. 6156–6161.
64. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Sun, Ye and Cheng, Jay J. 2005, Bioresource Technology, Vol. 96, pp. 1599-1606.
65. Effect of steam explosion on biodegradation of lignin in wheat straw. Zhang, Lian-hui, et al. 2008, Bioresource Technology, Vol. 99, pp. 8512-8515.
66. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Kim, Sung Bae and Lee, Y.Y. 2002, Bioresource Technology, Vol. 83, pp. 165-171.
67. Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Zhao, Xuebing, Zhang, Lihua and Liu, Dehua. 2008, Bioresource Technology, Vol. 99, pp. 3729-3736.
68. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Lloyd, Todd A. and Wayman, Charles E. 2005, Bioresource Technology, Vol. 96, pp. 1967-1977.
69. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Silverstein, Rebecca A., et al. 2007, Bioresource Technology, Vol. 98, pp. 3000-3011.
70. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Taherzadeh, M.J. and Karimi, K. 2007, Bioresources 2(3), pp. 472-499.
71. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Taherzadeh, M. J. and Karimi, K. 2007, BioResources, Vol. 2, pp. 707-738.
72. Structural features affecting biomass enzymatic digestibility. Zhu, Li, et al. 2008, Bioresource Technology, Vol. 99, pp. 3817-3828.
73. The effect of initial pore size and lignin content on the enzymatic hydrolysis of softwood. Mooney, C.A., et al. 1998, Biores. Technol., Vol. 64, pp. 113-119.
74. Cellulases adsorption and an evaluation of enzyme recycle durin hydrolysis of steam-exploded softwood residues. Lu, Y., et al. 2002, App. Biochem. Biotechnol., Vols. 98-100, pp. 641-654.
75. The relationship between fibre porosity and cellulose digestibility in steam-exploded Pinus radiata. Wong, K.K.Y., et al. 1988, Biotechnol. Bioeng., Vol. 31, pp. 447-456.
76. Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Schell, D., et al. 1998, App. Biochem. Biotechnol., Vols. 70-72, pp. 17-24.
77. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Delgenes, J. P., Moletta, R. and Navarro, J. M. 1996, Enzyme and Microbial Technology, Vol. 19, pp. 220-225.
78. Production of ethanol from wood hydrolyzate by yeasts. Sreenath, H.K. and Jeffries, T.W. 2000, Bioresource Technology, Vol. 72, pp. 253-260.
79. Direct Fermentation of D-Xylose to Ethanol by Kluyveromyces marxianus Strains. Margaritis, Argyrios and Bajpai, Pratima. 1982, Applied and Enviromental Microbiology, Vol. 44(5), pp. 1039-1041.
80. 13C-NMR Determination of Simultaneous Xylose and Glucose Fermentation by A Newly Isolated Strain (Gil) of Klebsiella planticola. Rossi, C., et al. 1995, Biomass and Bioenergy, Vol. 8(3), pp. 197-202.
81. Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii. Ahring, B. K., et al. 1999, Bioresource Technology, Vol. 68, pp. 3-9.
82. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Chu, Byron C.H. and Lee, Hung. 2007, Biotechnology Advances, Vol. 25, pp. 425-441. Research review paper.
83. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TALl. Meinander, Nina Q., Boels, Ingeborg and Hahn-Haigerdal, Bairbel. 1999, Bioresource Technology, Vol. 68, pp. 79-87.
84. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Helle, Steve S., et al. 2004, Bioresource Technology, Vol. 92, pp. 163-171.
85. Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Davis, Linda, et al. 2005, Biomass and Bioenergy, Vol. 29, pp. 49-59.
86. Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Govindaswamy, Shekar and Vane, Leland M. 2007, Bioresource Technology, Vol. 98, pp. 677-685.
87. Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Millati, Ria, Edebo, Lars and Mohammad J.Taherzadeh. 2005, Enzyme and Microbial Technology, Vol. 36, pp. 294-300.
88. Pretreatment of Lignocellulosic Waste to Improve Ethanol and Biogas Production. Taherzadeh, Muhammand J. and Karimi, Keikhosro. 2008, Int. J. Mol. Sci., Vol. 9, pp. 1621-1651.
89. Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Hatakka, A.I. 1983, Eur. J. Appl. Microbiol. Biotechnol., Vol. 18, pp. 350–357.
90. Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi. Lee, Jae-Won, et al. 2007, The Journal of Microbiology, Vol. 45(6), pp. 485-491.
91. Commercialization of Biopulping for Mechanical Pulping. Akhtar, Masood, et al. 1998. 7th International Conference on Biotechnology in the Pulp and Paper Industry. pp. A55-A58.
92. Variable optimization for biopulping of agricultural residues by Ceriporiopsis subvermispora. Yaghoubi, Kamel, Pazouki, Mohammad and Shojaosadati, Seyed Abbas. 2008, Bioresource Technology, Vol. 99, pp. 4321-4328.
93. Evaluation of selected white-rot fungi for biosulfite pulping. Mosai, S., et al. 1999, Bioresource Technology, Vol. 68, pp. 89-93.
94. Solid-state production of biopulp by Phanerochaete chrysosporium using steam-exploded wheat straw as substrate. Chen, Hongzhang, Xu, Fujian and Li, Zuohu. 2002, Bioresource Technology, Vol. 81, pp. 261-263.
95. Selection of white-rot fungi for biopulping. Blanchette, R.A. and Burnes, T.A. 1988, Biomass 15, pp. 93-101.
96. Colonization of crop residues by white-rot fungi: cell wall monosaccharides, phenolic acids, ruminal fermentation characteristics and digestibility of cell wall fiber components in vitro. Karunanandaa, K. and Varga, G.A. 1996, Animal Feed Science and Technology, Vol. 63, pp. 273-288.
97. Degradation of the lignocellulose complex in wood. Blanchette, R.A. 1995, Can. J. Bot., Vol. 73, pp. S999-S1010.
98. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Rodrigues, M.A.M., et al. 2008, Animal Feed Science and Technology, Vol. 141, pp. 326–338.
99. Yu, H., et al. Biological degradation and delignification of rice straw. Biotechnology in pulp and paper manufacture. s.l. : Butterworth-Heinemann, 1994.
100. Bio-Modification of Eucaluptus Chemithermo-Mechanical Pulp With White-rot Fungi. Yang, Qifeng, et al. 2007, BioResources, Vol. 2(4), pp. 682-692.
101. Suitability of aspenwood biologically delignification with Phlebia tremellosus for fermentation to ethanol or butadiol. Mes-Hartree, M., et al. 1987, Appl. Microbiol. Biotechnol., Vol. 26, pp. 120-125.
102. Biological Processing of Pine Logs for Pulp and Paper Production with Phlebiopsis gigantea. Behrendt, Chad J. and Blanchette, Robert A. s.l. : American Society for Microbiology, 1997, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 63, pp. 1995–2000. 1995.pdf.
103. Kent, Kirk T. and Cullen, Dan. Enzymology and Molecular Genetics of Wood Degradation by White-Rot Fungi. [book auth.] Raymond A. Young. Environmentally Friendly Technologies for the Pulp and Paper lndustry. s.l. : John Wiley & Sons, Inc., 1998, Enzymology and Molecular Genetics of Wood Degradation by White-Rot Fungi, pp. 273-307.
104. Hatakka, Annele. Biodegradation of Lignin. [book auth.] and Steinbuchel A, (Eds) Hofrichter M. Biopolymer. Biology, chemistry, biotechnology, applications. Vol. 1. Lignin, humic substances and coal. Weinheim, Germany : Wiley-WCH, 2001, Biodegradation of lignin, pp. 129-180.
105. The structure and function of fungal laccases. Thurston, C.F. 1994, Microbiol., Vol. 140, pp. 19-26.
106. Blue and yellow laccases of ligninolytic fungi. Leontievsky, A.A, et al. 1997, FEMS Microbiol. Lett., Vol. 56, pp. 9-14.
107. Enzymatic delignification of kraft pulp using laccase and a mediator. Bourbonnais, R. and Paice, M.G. 1996, Tappi J., Vol. 79, pp. 199-204.
108. Kraft pulp bleaching and delignification by Trametes versicolor. Archibald, F.S., et al. 1997, J. Biotechnol., Vol. 53, pp. 215-236.
109. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′ -Azinobis (3-Ethylbenzthiazoline-6-Sulfonate) in Kraft Lignin Depolymerization. Bourbonnais, R., et al. 1995, Appl. Environ. Microbiol., Vol. 61(5), pp. 1876-1880.
110. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Hölker, U., Höfer, M. and Lenz, J. 2004, Appl Microbiol Biotechnol, Vol. 64, pp. 175–186.
111. Modeling conversion and transport phenomena in solid-state fermentation: A review and perspectives. Rahardjo, Yovita S.P., Tramper, Johannes and Rinzema, Arjen. 2006, Biotechnology Advances, Vol. 24, pp. 161-179.
112. Application of solid-state fermentation to food industry–A review. Couto, Susana Rodriguez and Sanroman, M Angeles. 2006, Journal of Food Engineering, Vol. 76, pp. 291-302.
113. Review. Enzyme production by solid-state fermentation: Application to animal nutrition. Graminha, E.B.N., et al. 2008, Animal Feed Science and Technology, Vol. 144, pp. 1–22.
114. Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploaded straw as substrate. Fujian, Xu, Hongzhang, Chen and Zuohu, Li. 2001, Bioresource Technology, Vol. 80, pp. 149-141.
115. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Elisashvili, Vladimir, et al. 2008, Bioresource Technology, Vol. 99, pp. 457-462.
116. Isroi. Kompos. Materi disampaikan pada acara Study Research Siswa SMU Negeri 81 Jakarta. Bogor, Jawa Barat, Indonesia : Balai Penelitian Bioteknologi Perkebunan Indonesia, Februari 1-2, 2008.
117. Duncan, Catherine G. Relative aeration requirements by soft rot and basidiomycete wood-destroying fungi. Forest Product Laboratory, Madison S Wisconsin. 1961.
118. Increasing ligninolytic enzyme activities in several white-rot Basidiomycetes by nitrogen-sufficient media. Kaal, Erwin E. J., Field, Jim A. and Joyce, Thomas W. 1995, Bioresource Technology, Vol. 53, pp. 133-139.
119. High production of ligninolytic enzymes from white rot fungi in cereal brand liquid medium. Pickard, M.A., et al. 1999, Can. J. Microbiol, Vol. 45, pp. 627-631.
120. Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent peroxidases from Lignin-Degrading White Rot Fungi. Bonnarme, P. and Jeffries, T.W. 1990, Appl Environ. Microbiol., Vol. 56(1), pp. 210-217.
121. Production of bio-ethanol from barley straw and reed canary grass: a raw material study. Pahkala, K., et al. Berlin, Germany : s.n., 2007. 15th European Biomass Conference & Exhibition, 7-11 May 2007. pp. 154-157.
122. Short Communication: Enzymatic hydrolysis of rice straw by crude cellulase grom Trichohderma reesei. Kaur, P.P., Arneja, J.S. and Singh, J. 1998, Bioresource Technology 66, pp. 267-269.
123. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Krishna, S.H., Reddy, T.J. and Chowdary, G.V. 2001, Bioresource Technology 77, pp. 193-196.
124. The treatment of oil palm emty fruit bunch fibre for subsequent use as substrate for cellulase production by chaetomium globosum Kunze. Umikalsom, M.S., et al. 1997, Bioresource Technology 62, pp. 1-9.
125. Economic feasibility of producing ethanol from lignocellulosic feedstocks. Kaylen, Michael, et al. 2000, Bioresource Technology, Vol. 72, pp. 19-32.
126. Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Schell, Daniel J., et al. 2007, Bioresource Technology, Vol. 98, pp. 2942-2948.
127. Technology for conversion of lignocellulosic biomass to ethanol. Szczodrak, Janusz and Fiedurek, Jan. 1996, Biomass and Bioenergy, Vol. 10, pp. 367-375.
128. Grain and cellulosic ethanol: History, economics, and energy policy. Solomon, Barry D., Barnes, Justin R. and Halvorsen, Kathleen E. 2007, Biomass and Bioenergy, Vol. 31, pp. 416-425.
129. Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Sasner, P., Galbe, M. and Zacchi, G. 2007, Biomass and Bioenergy, p. .doi: 10.1016/j.biombioe.2007.10.014.
130. Characterization of dilute acid pretreatment of silvergrass for ethanol production. Guo, Gia-Luen, et al. 2008, Bioresource Technology, Vol. 99, pp. 6046-6053.
131. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Diena, Bruce S., et al. 2006, Biomass and Bioenergy 30 , pp. 880–891.
132. Optimization of pH controlled liquid hot water pretreatment of corn stover. Mosier, Nathan, et al. 2005, Bioresource Technology, Vol. 96, pp. 1986-1993.
133. Biodelignification of lemon grass dan citronella bagasse by white-rot fungi. Rolz, C., et al. 1986, Appl Environ. Microbiol., Vol. 52, pp. 607-611.
134. White-rot fungal growth on sugarcane lignocellulosic residue. Rolz, C., et al. 1987, Appl Microbiol Biotechnol, Vol. 25, pp. 535-541.
135. Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus. Karimi, Keikhosro, Emtiazib, Giti and Taherzadeh, Mohammad J. 2006, Process Biochemistry, Vol. 41, pp. 653-658.
136. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. Sues, Anna, et al. 2005, FEMS Yeast Research, Vol. 5, pp. 669-676.
137. Biotechnology in Pulp and Paper Manufacture. Applications and Fundamental Investigations. Kirk, T. Kent and Chang, Hou-Min (eds). 1994. Proceedings of the Fourth International Conference on Biotechnology in the Pulp and Paper Industry.
138. Degradation of the lignin model compount springgylglycol-[beta]-guaiacyl ether by Polyporus versicolor and Stereum frustulatum. Kirk, T. Kent, Harkin, John M. and Cowling, Ellis B. 1968, Biochimica et Biophysica Acta (BBA) – General Subjects, Vol. 165, pp. 145-163.
139. BBM, Timnas Pengembangan. Blue Print Pengembangan Bahan Bakar Nabati untuk Percepatan Kemiskinan dan Pengganguran 2006-2005. 2006.
140. Operating conditions of a 200 l staged vertical reactor for bioconversion of wheat straw by Phanerochaete chrysosporium. Bhatnagar, Ankur, Kumar, Sanjay and Gomes, James. 2008, Bioresource Technology, Vol. 99, pp. 6917–6927.
141. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Kalogeris, E., et al. 2003, Bioresource Technology, Vol. 86, pp. 207–213.
142. Design of a solid-state bioreactor for thermophilic microorganisms. Kalogeris, E., et al. 1999, Bioresource Technology, Vol. 67, pp. 313-315.
143. Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Kerem, Zohar, Friesem, Dana and Hadar, Yitzhak. 1992, Appl Environ. Microbiol., Vol. 58(4), pp. 1121-1127.
144. Microbial Delignification with White Rot Fungi Improves Forage Digestibility. Akin, D.E., et al. 1993, Applied and Environmental Microbiology, Vol. 59(12), pp. 4274-4282.
145. Gowthaman, M.K., Krishna, Chundakkadu and Moo-Young, M. Fungal solid state fermentation — an overview. Agriculture and Food Production. s.l. : Elsevier, 2001, Vol. Volume 1, pp. 305-352.
146. Biodegradation of lignocellulosic agricultural wastes by Pleurotus ostreatus. Hadar, Yitzhak, Kerem, Zohar and Gorodecki, Barbara. 1993, Journal of Biotechnology, Vol. 30, pp. 133-139.
147. Solid-state Fermentation of Soyhull for the Production of Cellulase. Jha, Krishna, Khare, S. K. and Gandhi, A. P. 1995, Bioresources Technology, Vol. 54, pp. 321-322. Short Communication.
148. Physical characteristics of compressed cotton stalks. Jha, S.K., Singh, Amar and Kumar, Adarsh. 2008, Biosystems Engineering, Vol. 99, pp. 205-210.
149. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Latifian, Maryam, Hamidi-Esfahani, Zohreh and Barzegar, Mohsen. 2007, Bioresource Technology, Vol. 98, pp. 3634-3637.
150. Lignocellulolytic enzymes from Fomes sclerodermeus growing in solid-state fermentation. Papinutti, V.L. and Forchiassin, F. 2007, Journal of Food Engineering 81 (2007), Vol. 81, pp. 54–59.
151. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Yang, S.Q., et al. 2006, Bioresource Technology, Vol. 97, pp. 1794–1800.
152. Enhanced production of laccase in Trametes versicolor by the addition of ethanol. Lee, I.Y., et al. 1999, Biotechnol. Lett., Vol. 21, pp. 965-968.
153. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Palmieri, G., et al. 2000, Appl. Environ. Microbiol., Vol. 66, pp. 920-924.
154. Lignin Peroxidases, Manganese Peroxidases, and Other Ligninolytic Enzymes Produced by Phlebia radiata during Solid-State Fermentation of Wheat Straw. Vares, Tamara, Kalsi, Mika and Hatakka, Annele. 1995, Appl Environ. Microbiol., Vol. 61(10), pp. 3515–3520.
155. Molecular Biology of the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Gold, Michael H. 1993, Microbiological Reviews, Vol. 57(3), pp. 605-622.

12 responses to “Referensi

  1. ass..bagaimana cara pembuatan bioetanol dari sekam padi? trus gima cara untuk delignifikasi dan identifikasinya? terima kasih atas jawabannya..mohon bimbingannya

  2. bagaimana kalau literaturnya ataupun cara kerjanya ditampilkan

  3. Coba lihat di posting yang lain dengan tag bioethanol
    https://isroi.wordpress.com/tag/bioethanol/

    isroi

  4. persentase penambahan mikroba bt fermentasi etanol ntu brp y mas???

    trim’s

  5. Asw. pak, gimana cara pembuatan bioethanol dengan menggunakan alang-alang? dan adakah referensi tentang alang-alang sebagai biomassa lignoselulosa. ex : potensi alang-alang sebagai bioethanol?

    syukron

  6. What will be the concentration of glucose sugar before entering the fermenter?

  7. Pingback: Produksi Bioethanol Berbahan Baku Biomassa Lignoselulosa: Pretreatment | Berbagi Tak Pernah Rugi

  8. Pingback: Produksi Bioethanol Berbahan Baku Biomassa Lignoselulosa : Hidrolisis Enzimatis | Berbagi Tak Pernah Rugi

  9. Pingback: Produksi Bioethanol Berbahan Baku Biomassa Lignoselulosa : Fermentasi | Berbagi Tak Pernah Rugi

  10. pak saya mau nanya bioethanol dengan sekam padi…. bisa dibantu jurnalnya pak…
    khusus nya dalam proses pemurnian… pake kolom destilasi atau menggunakan membran??

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s